高数-第二章-导数与微分

1.导数的概念

1. 导数定义
设函数 \(y = f\left( x\right)\) 在 \({x}_{0}\) 点的某邻域内有定义,当自变量 \(x\) 在 \({x}_{0}\) 点处取得增量 \({\Delta x}\left( {{\Delta x} \neq  0}\right)\) 时,相应地,函数 \(y\) 取得增量 \({\Delta y} = f\left( {{x}_{0} + {\Delta x}}\right)  - f\left( {x}_{0}\right)\) ,如果极限\[\mathop{\lim }\limits_{{{\Delta x} \rightarrow  0}}\frac{\Delta y}{\Delta x} = \mathop{\lim }\limits_{{{\Delta x} \rightarrow  0}}\frac{f\left( {{x}_{0} + {\Delta x}}\right)  - f\left( {x}_{0}\right) }{\Delta x}\]存在,则称函数 \(y = f\left( x\right)\) 在 \({x}_{0}\) 点可导,并称这个极限值为函数 \(y = f\left( x\right)\) 在 \({x}_{0}\) 点处的导数,记为\({\displaystyle\left. {f}^{\prime }\left( {x}_{0}\right) ,{y}^{\prime }\left( {x}_{0}\right) ,\frac{\mathrm{d}y}{\mathrm{\;d}x}\right| }_{x = {x}_{0}}\)
如果记 \(x = {x}_{0} + {\Delta x}\) ,则导数又可表示为\[{f}^{\prime }\left( {x}_{0}\right)  = \mathop{\lim }\limits_{{x \rightarrow  {x}_{0}}}\frac{f\left( x\right)  - f\left( {x}_{0}\right) }{x - {x}_{0}}.\]若极限 \(\displaystyle\mathop{\lim }\limits_{{{\Delta x} \rightarrow  {0}^{ - }}}\frac{\Delta y}{\Delta x} = \mathop{\lim }\limits_{{{\Delta x} \rightarrow  {0}^{ - }}}\frac{f\left( {{x}_{0} + {\Delta x}}\right)  - f\left( {x}_{0}\right) }{\Delta x}\) 存在,则该极限值称为 \(f\left( x\right)\) 在 \({x}_{0}\) 点的左导数, 记作\[{f}_{ - }^{\prime }\left( {x}_{0}\right) \text{ ,或 }{f}_{ - }^{\prime }\left( {x}_{0}\right)  = \mathop{\lim }\limits_{{x \rightarrow  {x}_{0}^{ - }}}\frac{f\left( x\right)  - f\left( {x}_{0}\right) }{x - {x}_{0}}.\]若极限 \(\displaystyle\mathop{\lim }\limits_{{{\Delta x} \rightarrow  {0}^{ + }}}\frac{\Delta y}{\Delta x} = \mathop{\lim }\limits_{{{\Delta x} \rightarrow  {0}^{ + }}}\frac{f\left( {{x}_{0} + {\Delta x}}\right)  - f\left( {x}_{0}\right) }{\Delta x}\) 存在,则该极限值称为 \(f\left( x\right)\) 在 \({x}_{0}\) 点的右导数, 记作\[{f}_{ + }^{\prime }\left( {x}_{0}\right) \text{ 或 }{f}_{ + }^{\prime }\left( {x}_{0}\right)=\mathop{\lim }\limits_{{x \rightarrow  {x}_{0}^{ + }}}\frac{f\left( x\right)  - f\left( {x}_{0}\right) }{x - {x}_{0}}\]函数 \(f\left( x\right)\) 在 \({x}_{0}\) 点可导,且导数为 \(A\) 的充要条件是\[{f}^{\prime }\left( {x}_{0}\right)  = {f}_{ - }^{\prime }\left( {x}_{0}\right)  = {f}_{ + }^{\prime }\left( {x}_{0}\right)  = A\]2. 导数的几何意义
导数 \({f}^{\prime }\left( {x}_{0}\right)\) 在几何上表示曲线 \(y = f\left( x\right)\) 在 \(M\left( {{x}_{0},f\left( {x}_{0}\right) }\right)\) 点处的切线斜率
曲线 \(y = f\left( x\right)\) 在点 \(M\) 的切线方程是\[y = {f}^{\prime }\left( {x}_{0}\right) \left( {x - {x}_{0}}\right)  + f\left( {x}_{0}\right) ,\]曲线 \(y = f\left( x\right)\) 在点 \(M\) 的法线方程是\[y =  - \frac{1}{{f}^{\prime }\left( {x}_{0}\right) }\left( {x - {x}_{0}}\right)  + f\left( {x}_{0}\right) \;\text{ (当 }{f}^{\prime }\left( {x}_{0}\right)  \neq  0\text{ 时) }\]3. 函数的可导性与连续性
若函数 \(y = f\left( x\right)\) 在 \({x}_{0}\) 点可导,则 \(y = f\left( x\right)\) 在 \({x}_{0}\) 点必连续. 但连续不一定可导

2. 导数的基本公式与运算法则

1. 基本初等函数的导数公式
(1)\(\displaystyle c^\prime=0\)
(2)\(\displaystyle{\left( {x}^{\mu }\right) }^{\prime } = \mu {x}^{\mu  - 1}\;\left( {\mu \text{ 为实数 }}\right)\)
(3)\(\displaystyle\sin^{\prime}x =\cos x\)
(4)\(\displaystyle\cos^{\prime}x=-\sin x\)
(5)\(\displaystyle\tan^{\prime} x={\sec }^{2}x\)
(6)\(\displaystyle\cot^{\prime} x=-{\csc }^{2}x\)
(7)\(\displaystyle\sec^{\prime} x=\sec x \vdot  \tan x\)
(8)\(\displaystyle\csc^{\prime}x =-\csc x \vdot  \cot x\)
(9)\(\displaystyle{\left( {a}^{x}\right) }^{\prime } = {a}^{x}\ln a\;\left( {a > 0,a \neq  1}\right)\)
(10)\(\displaystyle{\left( {\mathrm{e}}^{x}\right) }^{\prime } = {\mathrm{e}}^{x}\)
(11)\(\displaystyle\log^{\prime}_{a}x=\frac{1}{x\ln a}\;\left( {a > 0,a \neq  1}\right)\)
(12)\(\displaystyle\ln^{\prime}x =\frac{1}{x}\)
(13)\(\displaystyle\arcsin^{\prime}x= \frac{1}{\sqrt{1-{x}^{2}}}\)
(14)\(\displaystyle\arccos^{\prime}x = -\frac{1}{\sqrt{1-{x}^{2}}}\)
(15)\(\displaystyle\arctan^{\prime}x= \frac{1}{1+{x}^{2}}\)
(16)\(\displaystyle\operatorname{arccot}^{\prime }x=-\frac{1}{1+{x}^{2}}\)
2. 导数的四则运算法则
设函数\(u\left( x\right) ,v\left( x\right)\) 在 \(x\) 点可导,则
(1)\(\displaystyle{\left\lbrack  u\left( x\right)  \pm  v\left( x\right) \right\rbrack  }^{\prime } = {u}^{\prime }\left( x\right)  \pm  {v}^{\prime }\left( x\right)\)
(2)\(\displaystyle{\left\lbrack  u\left( x\right)  \vdot  v\left( x\right) \right\rbrack  }^{\prime } = {u}^{\prime }\left( x\right) v\left( x\right)  + u\left( x\right) {v}^{\prime }\left( x\right)\)
(3)\(\displaystyle{\left\lbrack  \frac{u\left( x\right) }{v\left( x\right) }\right\rbrack  }^{\prime } = \frac{{u}^{\prime }\left( x\right) v\left( x\right)  - u\left( x\right) {v}^{\prime }\left( x\right) }{{\left\lbrack  v\left( x\right) \right\rbrack  }^{2}},\;\left( {v\left( x\right)  \neq  0}\right)\)
3. 复合函数的求导法则
若\(u = \varphi \left( x\right)\) 在 \(x\) 点可导,而 \(y = f\left( u\right)\) 在对应点 \(u\left( {u = \varphi \left( x\right) }\right)\) 可导, 则复合函数 \(y = f\left\lbrack  {\varphi \left( x\right) }\right\rbrack\) 在 \(x\) 点可导,且\[{y}^{\prime } = {f}^{\prime }\left( u\right)  \vdot  {\varphi }^{\prime }\left( x\right)\]4. 反函数求导法则
若单调连续函数\(x = \varphi \left( y\right)\) 在 \(y\) 点可导,且其导数 \({\varphi }^{\prime }\left( y\right)\neq0\) ,则它的反函数 \(y = f\left( x\right)\) 在对应点 \(x\) 可导,且\[{f}^{\prime }\left( x\right)=\frac{1}{{\varphi }^{\prime }\left( y\right) }\text{ ,或 }\frac{\mathrm{d}y}{\mathrm{\;d}x} = \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}y}}\]

3. 高阶导数 隐函数及参数方程求导

1. 高阶导数
函数\(y = f\left( x\right)\) 的导数的导数,即 \({\left( {y}^{\prime }\right) }^{\prime }\) ,称为 \(f\left( x\right)\) 的二阶导数,记为 \({y}^{\prime \prime } ={f}^{\prime \prime }\left( x\right)\) ; 一般 \(y = f\left( x\right)\) 的(n - 1)阶导数的导数称为 \(f\left( x\right)\) 的 \(n\) 阶导数,记为 \({y}^{\left( n\right) } = {f}^{\left( n\right) }\left( x\right)\) . 二阶及二阶以上的导数称为高阶导数.设函数 \(u = u\left( x\right) ,v = v\left( x\right)\) 具有 \(n\) 阶导数,则
\({\left\lbrack  u \pm  v\right\rbrack  }^{\left( n\right) } = {u}^{\left( n\right) } \pm  {v}^{\left( n\right) }\)
\({\left\lbrack  ku\right\rbrack}^{\left( n\right) } = k{u}^{\left( n\right) }\)
\({\left\lbrack  uv\right\rbrack  }^{\left( n\right) } = \mathop{\sum }\limits_{{k = 0}}^{n}{C}_{n}^{k}{u}^{\left( n - k\right) }{v}^{\left( k\right) }\)
\(\qquad\quad\displaystyle= {u}^{\left( n\right) }v + n{u}^{\left( n - 1\right) }{v}^{\prime } + \frac{n\left( {n - 1}\right) }{2!}{u}^{\left( n - 2\right) }{v}^{\prime \prime } + \cdots  + n{u}^{\prime }{v}^{\left( n - 1\right) } + u{v}^{\left( n\right) }\)
称为莱布尼兹 \(n\) 阶导数公式
2. 隐函数的导数
求由方程 \(F\left( {x,y}\right)  = 0\) 所确定的隐函数 \(y = y\left( x\right)\) 的导数 \({y}^{\prime }\left( x\right)\) ,可将方程 \(F\left( {x,y}\right)  = 0\) 两端对 \(x\) 求导,并注意 \(y\) 是 \(x\) 的函数,最后解出 \({y}^{\prime }\left( x\right)\)
3. 参数方程确定的函数的导数
设\(\left\{  \begin{array}{l} x = \varphi \left( t\right) \\  y = \psi \left( t\right)  \end{array}\right.\) 确定了 \(y\) 是 \(x\) 的函数, \(t\) 为参数,则 \(\displaystyle\frac{\mathrm{d}y}{\mathrm{\;d}x} = \frac{\mathrm{d}y/\mathrm{d}t}{\mathrm{\;d}x/\mathrm{d}t} = \frac{{\psi }^{\prime }\left( t\right) }{{\varphi }^{\prime }\left( t\right) }\)

4. 微分

1. 微分定义
若函数\(f\left( x\right)\) 在 \(x\) 点的增量 \({\Delta y} = f\left( {x + {\Delta x}}\right)  - f\left( x\right)\) ,可表示为 \({\Delta y} = {A\Delta x} +\)  \(o\left( {\Delta x}\right)\) ,其中: \(A\) 是与 \({\Delta x}\) 无关的量; 当 \({\Delta x} \rightarrow  0\) 时, \(o\left( {\Delta x}\right)\) 是比 \({\Delta x}\) 高阶的无穷小. 则称 \(y = f\left( x\right)\) 在 \(x\) 点可微,而线性主部 \({A\Delta x}\) 称为 \(y = f\left( x\right)\) 在 \(x\) 点的微分,记为 \(\mathrm{d}y\) 或 \(\mathrm{d}f\left( x\right)\) ,即 \(\mathrm{d}y = \mathrm{d}f\left( x\right)  = A\vdot{\Delta x}\)
当函数 \(f\left( x\right)\) 可微时,微分中 \({\Delta x}\) 的系数 \(A = {f}^{\prime }\left( x\right)\) ,记 \(\mathrm{d}x = {\Delta x}\) ,称之为自变量的微分,微分表达式通常写为对称形式\[\mathrm{d}y = {f}^{\prime }\left( x\right) \mathrm{d}x\]而导数就是函数微分与自变量微分之商 (微商)\[{f}^{\prime }\left( x\right)  = \frac{\mathrm{d}y}{\mathrm{d}x}\]2. 基本初等函数的微分公式
略.
3. 微分四则运算法则
设函数 \(u\left( x\right) ,v\left( x\right)\) 可微,则有
(1)\(\mathrm{d}\left\lbrack  {u\left( x\right)  \pm  v\left( x\right) }\right\rbrack   = \mathrm{d}u\left( x\right)  \pm  \mathrm{d}v\left( x\right)\)
(2)\(\mathrm{d}\left\lbrack  {u\left( x\right)  \vdot  v\left( x\right) }\right\rbrack   = v\left( x\right) \mathrm{d}u\left( x\right)  + u\left( x\right) \mathrm{d}v\left( x\right)\)
(3)\(\displaystyle\mathrm{d}\left\lbrack  \frac{u\left( x\right) }{v\left( x\right) }\right\rbrack=\frac{v\left( x\right) \mathrm{d}u\left( x\right)-u\left( x\right) \mathrm{d}v\left( x\right) }{{\left\lbrack  v\left( x\right) \right\rbrack  }^{2}},\quad\left( {v\left( x\right)  \neq 0}\right)\)
4. 微分的形式不变性
设函数\(u = \varphi \left( x\right)\) 在 \(x\) 点可微,函数 \(y = f\left( u\right)\) 在相应的点 \(u = \varphi \left( x\right)\) 处可微,则复合函数 \(y = f\left\lbrack  {\varphi \left( x\right) }\right\rbrack\) 在 \(x\) 点可微,且微分式\[\mathrm{d}y = {f}^{\prime }\left\lbrack  {\varphi \left( x\right) }\right\rbrack   \vdot  {\varphi }^{\prime }\left( x\right) \mathrm{d}x = {f}^{\prime }\left( u\right) \mathrm{d}u\]这表明,不论 \(u\) 是自变量或中间变量,函数 \(y = f\left( u\right)\) 的微分形式都是一样的,这个性质称为一阶微分形式的不变性
5. 可微的充要条件
函数 \(f\left( x\right)\) 在 \({x}_{0}\) 点可微的充分必要条件是 \(f\left( x\right)\) 在 \({x}_{0}\) 点可导,且 \(\mathrm{d}y={f}^{\prime }\left( {x}_{0}\right) \mathrm{d}x\)
6. 可微的必要条件
函数\(f\left( x\right)\) 在 \({x}_{0}\) 点可微的必要条件是 \(f\left( x\right)\) 在 \({x}_{0}\) 点连续